Note

This example corresponds to the simulations in Shi, P., Wei, M., & Barbot, S., (2022), submitted to JGR - Solid Earth. The mesh size is downgraded for speed of the document building

using Oetqf, SpecialFunctions, Optim

Generate the mesh for the transform fault, which is suited for using Okaka, (1992) equation:

mf = gen_mesh(Val(:RectOkada), 80e3, 8e3, 10e3, 2e3, 90.0);

Use Gmsh to generate the mantle mesh, which is suited for using Barbot et al., (2017) equation, with no refinement in x or y direction while cell sizes are 1.5 times progressively larger along z axes:

gen_gmsh_mesh(Val(:BEMHex8Mesh), -40e3, -2.5e3, -8e3, 80e3, 5e3, -22e3, 4, 3, 3;
    output = joinpath(@__DIR__, "mantle.vtk"),
    rfzh = cumprod(ones(3) * 1.5), rfy = 1.0, rfyType = "Bump"
)
ma = gen_mesh(Val(:BEMHex8Mesh), joinpath(@__DIR__, "mantle.vtk"));
Info    : Meshing 1D...
Info    : [  0%] Meshing curve 1 (Line)
Info    : [ 10%] Meshing curve 2 (Line)
Info    : [ 20%] Meshing curve 3 (Line)
Info    : [ 30%] Meshing curve 4 (Line)
Info    : [ 40%] Meshing curve 6 (Extruded)
Info    : [ 50%] Meshing curve 7 (Extruded)
Info    : [ 50%] Meshing curve 8 (Extruded)
Info    : [ 60%] Meshing curve 9 (Extruded)
Info    : [ 70%] Meshing curve 11 (Extruded)
Info    : [ 80%] Meshing curve 12 (Extruded)
Info    : [ 90%] Meshing curve 16 (Extruded)
Info    : [100%] Meshing curve 20 (Extruded)
Info    : Done meshing 1D (Wall 0.000227002s, CPU 0.000223s)
Info    : Meshing 2D...
Info    : [  0%] Meshing surface 1 (Transfinite)
Info    : [ 20%] Meshing surface 13 (Extruded)
Info    : [ 40%] Meshing surface 17 (Extruded)
Info    : [ 50%] Meshing surface 21 (Extruded)
Info    : [ 70%] Meshing surface 25 (Extruded)
Info    : [ 90%] Meshing surface 26 (Extruded)
Info    : Done meshing 2D (Wall 0.000319003s, CPU 0.00031s)
Info    : Meshing 3D...
Info    : Meshing volume 1 (Extruded)
Info    : Done meshing 3D (Wall 0.000125501s, CPU 0.000122s)
Info    : Optimizing mesh...
Info    : Done optimizing mesh (Wall 3.9e-06s, CPU 4e-06s)
Info    : 80 nodes 150 elements
Info    : Writing '/home/runner/work/Oetqf.jl/Oetqf.jl/docs/build/generated/mantle.vtk'...
Info    : Done writing '/home/runner/work/Oetqf.jl/Oetqf.jl/docs/build/generated/mantle.vtk'
Info    : Reading '/home/runner/work/Oetqf.jl/Oetqf.jl/docs/build/generated/mantle.vtk'...
Info    : Reading 80 points
Info    : Reading 150 cells
Info    : Done reading '/home/runner/work/Oetqf.jl/Oetqf.jl/docs/build/generated/mantle.vtk'

Compute the stress Green's function between the two meshes:

λ = μ = 3e10
gffile = joinpath(@__DIR__, "gf.h5")
isfile(gffile) && rm(gffile)
@time gf₁₁ = stress_greens_function(mf, λ, μ; buffer_ratio = 1)
h5write(gffile, "gf₁₁", gf₁₁) # fault -> fault
@time gf₁₂ = stress_greens_function(mf, ma, λ, μ; buffer_ratio = 1, qtype = "Gauss1")
h5write(gffile, "gf₁₂", gf₁₂) # fault -> mantle
@time gf₂₁ = stress_greens_function(ma, mf, λ, μ)
h5write(gffile, "gf₂₁", gf₂₁) # mantle -> fault
@time gf₂₂ = stress_greens_function(ma, λ, μ; qtype = "Gauss1")
h5write(gffile, "gf₂₂", gf₂₂) # mantle -> mantle
  2.148996 seconds (3.05 M allocations: 155.368 MiB, 3.69% gc time, 99.91% compilation time)
  0.490442 seconds (507.99 k allocations: 26.954 MiB, 81.86% compilation time)
  6.090463 seconds (9.78 M allocations: 426.988 MiB, 3.70% gc time, 71.95% compilation time)
Maximum real part of eigval is: 1111120100.9503
 12.751689 seconds (1.33 M allocations: 71.680 MiB, 0.31% gc time, 8.29% compilation time)
Tip

The buffer_ratio denotes the fraction to the original fault length on the two sides of the fault in which no dislocation occurs. It serves as a buffer zone to immitate the ridge section on the edges of an oceanic transform fault (personal communication with Yajing Liu). Basically, it affects how the stiffness tensor are periodically summed.

Tip

Notice that, in Gmsh before v4.9, the quadrature type "Gauss2" does not stand for the product rule, instead it is an optimized cubature rule (see this issue). For more cubature rules, see quadpy.

Set up the rate-and-state friction parameters in the fault:

cs = 3044.14 # m/s
vpl = 140e-3 / 365 / 86400 # 140 mm/yr
v0 = 1e-6
f0 = 0.6
μ = 3e10
η = μ / 2cs # radiation damping
ν = λ / 2(λ + μ)
avw = 0.015
abvw = 0.0047
Dc = 8e-3
σmax = 5e7
a = ones(mf.nx, mf.nξ) .* avw
b = ones(mf.nx, mf.nξ) .* (avw - abvw)
L = ones(mf.nx, mf.nξ) .* Dc
σ = [min(σmax, 1.5e6 + 18.0e3 * z) for z in -mf.z] # Pa
σ = repeat(σ, 1, mf.nx)' |> Matrix # Pa
left_patch = @. -25.e3 ≤ mf.x ≤ -5.e3
right_patch = @. 5.e3 ≤ mf.x ≤ 25.e3
vert_patch = @. -6.e3 ≤ mf.z ≤ -1e3
b[xor.(left_patch, right_patch), vert_patch] .= avw + abvw # assign velocity weakening
pf = RateStateQuasiDynamicProperty(a, b, L, σ, η, vpl, f0, v0)
save_property(joinpath(@__DIR__, "para-fault.bson"), pf);

Set up rheology parameters in the mantle assuming power-law viscosity with lab-derived results:

A_wet_dis = 3e1
Q_wet_dis = 480e3
V_wet_dis = 11e-6
m_wet_dis = 0
r_wet_dis = 1.2
n_wet_dis = 3.5
grain_size = 10000.0 # μm
COH = 1000 # ppm / HSi
𝙍 = 8.314 # gas contant
crust_depth = 7e3
κ = 8e-7
𝚃(z) = 1673 * erf(z / sqrt(4κ * 1e6 * 365 * 86400)) # 1 Myr OTF
𝙿(z) = 2800 * 9.8 * crust_depth + 3300 * 9.8 * (z - crust_depth)
prefactor_dis(z) = A_wet_dis / (1e6)^n_wet_dis * COH^r_wet_dis * grain_size^m_wet_dis * exp(-(Q_wet_dis + 𝙿(z) * V_wet_dis) / 𝙍 / 𝚃(z))
rel_dϵ = [0.0, -1e-12, 0.0, 0.0, 0.0, 0.0]
amplifier = 1e0
γ_dis = prefactor_dis.(-ma.cz) .* amplifier
pa = PowerLawViscosityProperty(γ_dis, ones(length(ma.cz)) * (n_wet_dis - 1), rel_dϵ) # notice to save `n-1` instead of `n` where `n` refers the stress power
save_property(joinpath(@__DIR__, "para-mantle" * ".bson"), pa);
Warning

Make sure your units are consistent across the whole variable space. Also, notice that we save n-1 instead of n where n refers the stress power.

Tip

To load existing properties, use load_property(YOUR_FILE, :RateStateQuasiDynamicProperty) or load_property(YOUR_FILE, :PowerLawViscosityProperty) accordingly.

Set up initial conditions on the fault with an offset between left and right half fault:

vinit = pf.vpl .* ones(size(pf.a))
θinit = pf.L ./ vinit
θinit[1: size(θinit, 1) >> 1, :] ./= 1.1
θinit[size(θinit, 1) >> 1 + 1: end, :] ./= 2.5
δinit = zeros(size(pf.a));

Set up initial conditions in the mantle

ϵinit = zeros(length(pa.γ), 6)
P = map(z -> 2800 * 9.8 * crust_depth + 3300 * 9.8 * (z - crust_depth), -ma.cz) # change the depth of crust
σinit = repeat(P, 1, 6)
σinit[:,3] .= 0.0 # xz
σinit[:,5] .= 0.0 # yz
target(i) = x -> (pa.γ[i] * (sqrt(2) * x) ^ (pa.n[i]) * x - abs(pa.dϵ₀[2])) ^ 2
σxyinit = -map(i -> Optim.minimizer(optimize(target(i), 1e1, 1e14)), 1: length(pa.γ))
reldϵ = map(i -> pa.γ[i] * (sqrt(2) * abs(σxyinit[i])) ^ (pa.n[i]) * σxyinit[i], 1: length(pa.γ))
@assert all(isapprox.(reldϵ, pa.dϵ₀[2]; rtol=1e-3))
σinit[:,2] .= σxyinit;

Assemble the problem:

uinit = ArrayPartition(vinit, θinit, ϵinit, σinit, δinit)
prob = assemble(gf₁₁, gf₁₂, gf₂₁, gf₂₂, pf, pa, uinit, (0.0, 0.1 * 365 * 86400));

Set up the saving scheme and solve the equation:

handler(u::ArrayPartition, t, integrator) = (u.x[1], u.x[2], integrator(integrator.t, Val{1}).x[3], u.x[3], u.x[4], u.x[5])
output = joinpath(@__DIR__, "output.h5")
@time sol = wsolve(prob, VCABM5(), output, 100, handler, ["v", "θ", "dϵ", "ϵ", "σ", "δ"], "t";
    reltol=1e-6, abstol=1e-8, dtmax=0.2*365*86400, dt=1e-8, maxiters=1e9, stride=100, force=true
)
retcode: Success
Interpolation: 1st order linear
t: 2-element Vector{Float64}:
 0.0
 3.1536e6
u: 2-element Vector{ArrayPartition{Float64, NTuple{5, Matrix{Float64}}}}:
 ([4.439370877727043e-9 4.439370877727043e-9 4.439370877727043e-9 4.439370877727043e-9; 4.439370877727043e-9 4.439370877727043e-9 4.439370877727043e-9 4.439370877727043e-9; … ; 4.439370877727043e-9 4.439370877727043e-9 4.439370877727043e-9 4.439370877727043e-9; 4.439370877727043e-9 4.439370877727043e-9 4.439370877727043e-9 4.439370877727043e-9], [1.6382337662337658e6 1.6382337662337658e6 1.6382337662337658e6 1.6382337662337658e6; 1.6382337662337658e6 1.6382337662337658e6 1.6382337662337658e6 1.6382337662337658e6; … ; 720822.857142857 720822.857142857 720822.857142857 720822.857142857; 720822.857142857 720822.857142857 720822.857142857 720822.857142857], [0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0; … ; 0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0], [2.993126315789474e8 -1.159793132258934e6 … 0.0 2.993126315789474e8; 4.865442105263158e8 -279723.0841659712 … 0.0 4.865442105263158e8; … ; 4.865442105263158e8 -279723.0841659712 … 0.0 4.865442105263158e8; 7.673915789473685e8 -235923.5595516861 … 0.0 7.673915789473685e8], [0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0; … ; 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0])
 ([4.0767159594235405e-9 4.0726161646218115e-9 4.075442712505631e-9 4.088964986854444e-9; 3.4430994936084665e-9 3.417383507316748e-9 3.4394142405451146e-9 4.062644180138336e-9; … ; 7.586803545971388e-10 7.350000917671253e-10 7.495634426596897e-10 2.050210814376089e-9; 2.0738117751487143e-9 2.038088908694873e-9 2.04703978043994e-9 2.0960945203688157e-9], [1.859041830005468e6 1.8598256458685251e6 1.8593496130393536e6 1.857018956937463e6; 2.0017790267709633e6 2.0064139281263128e6 2.002447943695447e6 1.861281287169844e6; … ; 2.87470435919983e6 2.885326685849754e6 2.878660033158451e6 2.27726833669272e6; 2.270762721125289e6 2.279965835489089e6 2.2775965956855654e6 2.264780686989732e6], [-1.9490353620031998e-10 -3.1502254797285903e-6 … 1.1170093924188181e-10 -5.760585512089933e-12; -3.143400768082191e-10 -3.147648023537708e-6 … 4.658202394508259e-10 -4.579661829808136e-11; … ; -5.615414365772426e-10 -3.130506294386605e-6 … -9.986930109540351e-10 -6.37906389157408e-10; -1.2895019450552975e-10 -3.144725879035746e-6 … -6.507466234411018e-10 -2.713827658666108e-10], [2.993123106670303e8 -1.1588113187960377e6 … 109.26822528313411 2.993125101945185e8; 4.865440819229595e8 -279332.7091137653 … 107.15415362778771 4.865441499927153e8; … ; 4.865439287083998e8 -278353.0326551578 … -211.77387653432862 4.865439457601052e8; 7.673915013824514e8 -235463.2839044049 … -117.59525367783492 7.673914887318368e8], [0.0133529772462193 0.013347861796139792 0.01335086397318031 0.01336568039662874; 0.012402031284312586 0.01237569089985771 0.01239823817095998 0.013339120424513825; … ; 0.005481590408943952 0.005435821491326209 0.005464692151618529 0.008821136598718868; 0.008856835911829546 0.008807659334967277 0.008820414519594021 0.0088895007217099])
Tip

See this issue to know more about retrieving derivatives in the solution.


This page was generated using Literate.jl.