Rheology

This package implements plastic deformation as the key for modeling asthenosphere dynamics. Currently, only DiffusionCreep and DislocationCreep are supported.

Public Interface

Quaycle.DiffusionCreepType
\[\dot{ϵ} = A σ′ d^{-m} C_{\mathrm{OH}} ^{r} \exp{\left(αϕ\right)} \exp{\left(- \frac{Q + PV}{RT}\right)}\]
source
Quaycle.DislocationCreepType
\[\dot{ϵ} = A τ^{n-1} σ′ C_{\mathrm{OH}} ^{r} \exp{\left(αϕ\right)} \exp{\left(- \frac{Q + PV}{RT}\right)}\]
source
Quaycle.PeierlsType
\[\dot{ϵ} = \dot{ϵ_{P}}\left(\frac{σ}{G}\right)^{2} \exp{\left(-\frac{ΔF_{k}^{o}}{RT}\left(1 - \left(\frac{σ}{σ_{P}}\right)^{r}\right)^{s}\right)}\]
source

References

Hirth, G., & Kohlstedt, D. (2003). Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists. In Inside the Subduction Factory (pp. 83–105). American Geophysical Union (AGU). https://doi.org/10.1029/138GM06

Karato, S. (2010). Rheology of the Earth’s mantle: A historical review. Gondwana Research, 18(1), 17–45. https://doi.org/10.1016/j.gr.2010.03.004

Kohlstedt, D. L., & Hansen, L. N. (2015). 2.18 - Constitutive Equations, Rheological Behavior, and Viscosity of Rocks. In G. Schubert (Ed.), Treatise on Geophysics (Second Edition) (pp. 441–472). Oxford: Elsevier. https://doi.org/10.1016/B978-0-444-53802-4.00042-7